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number of partitions. The major discrepancy between our com-

putations and those of Ogusu and Tanaka appears to be around

carrier densities of 1017 cm– 3, which is near maximum wave

attenuation. We note that the two methods have been compared

by other researchers [7], [8] in regard to accuracy and efficiency.

Nevertheless, we feel that the simultaneous solution of the eigen-

values and differential equations can be more effectively per-

formed by die multipoint boundary-value solver as described in

our
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Comments on “Self-Adjoint Vector Variational

Formulation for Lossy Anisotropic

Dielectric Waveguide”

ROLAND HOFFMANN

In the above paper,l the authors present a “new variational

formula” and its derivation. A careful inspection of the text

shciws that there are a number of errors and wrong conclusions

with the fatal consequence that the final variational formula

[1, eq. (37)] is incorrect. The main fallacy of the authors appears

to be the derivation of the adjoint solution, and the followifig

discussion will be restricted to this point.

The authors state correctly [1, eq. (11)] that, for real inner

product, the eigenvalue of the adjoint problem is Y“ = – y (while

[1, eq. (12)] should read y“ = – y*). The arguments following this

equation are not complete and the conclusions are not clear. It is

in fact true that there are several classes of waveguides with the

property that y as well as – y is a valid eigenvalue of the

problem. But in contrast to the authors method, this may appear

as a solution of [1, eq. (l)] as well as [1, eq. (2)] by taking into

account that the electromagnetic fields, i.e., the eigenvectors are
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different for + y and – y; hence, the matrix B differs. This

property, named bidirectionality, has been thoroughly worked

out in the excellent paper by McIsaac [2], where it turns out that

even in the most generaf case of loss gyrotropic media there are

classes of waveguide which exhibit this property.

In these cases, it will be possible to identify the ac~joint

solution with the eigenvector of the original waveguide belonging

to – y, i.e., the backward-running wave, but we are not allowed

to conclude self-adjointness, as the authors obviously do by

giving the condition [1, eqs. (25), (26)]

H“(x, y) =H(x, y)

E“(x, y) =E(x, y)

for the adjoint solution. This does not hold because the adjoint

solution is the backward-running wave in the original waveguide

whose fields are different from those of the wave running in the

+ z direction with + y.

Having drawn wrong conclusions about the adjoint fields, the

authors neglect the terms with the factor y in [1, eq. (35)].

However, these terms will not cancel, taking into account the

correct adjoint solution. Thus, the final variational formula [ 1, eq.

(37)] is wrong. No doubt it is a stationary formula, but not for

solutions of the correct differential equation including the y

terms

vTxc-%T xH+y(uz xc-% TxH+vTxc-%zx H)

+yz. uzxc –lUZ XH– 6AopoH=o (1)

which is different from the Euler equation [1, eq. (41)] of the

variational formula. .

Thus, this formula will not give good approximations for the

propagation constant y by substituting trial functions for the

magdetic field, nor will it give correct solutions for the magnetic

field applying the Ritz procedure to the stationary formula.

Looking for reasons for the authors error, it is observed

initially that they do not take into account the information given

in [9] of their reference list ([4] here), where in (53) the

backward-running wave has been identified as the adjoint solu-

tiofi, as well as in eq. (18) of their reference [10] (reference [5]

here). Next, it is to be seen that they shift between three-dimen-

sional and two-dimensional field problems in their considera-

tions. Indeed, this can be done, but utmost care has to be taken

because the properties of the corresponding operators may& ffer.

So, while it is self-adjoint for the three-dimensional problem with

a complex symmetric tensor, it is non-self-adjoint for the corre-

spon&g two-dimensional waveguide problem [3]. On the other

hand, they do not try to derive the adjoint operator systematic-

ally by use of [1, eq. (19)], which will always give the correct

result, commencing from the correct two-dimensional wave equa-

tion.

These properties of non-self-adjoint operators are not original.

They axe included in a thorough study of the electromagnetic

variational principle [3]. This method has the advantage that it

starts with physical reality, i.e., considering isotropic/gyrotropic,

lossless/lossy media. The operators describing the physical prob-

lems are studied in detail. Their properties for three-dimensional

as well as two-dimensional problems are derived for both Hermi-

tian (complex) and symmetric (real) inner products. As one result

among many, it has been found that for the problem at hantd no

self-adjoint formulation with symmetric (real) inner product is

possible. It turns out that the only way to obtain a “variational
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formula for the complex propaga~on constant” in terms of real

frequency and the three-vector H is to take into account the

correct adjoint solutions, which finally yields an equation in

terms of y and yz.

Reply2 by Srboljub R. Cvetkovic and J. Brian Davies3

The authors wish to thank Dr.-Ing. Hoffman for pointing out

the apparent lack of clarity in [1], for drawing attention to his

paper [3], and for spotting the sign error in [1, eq, (12)]. We

would therefore like to take this opportunity to discuss briefly

these ambiguities, as they probably led Dr.-Ing. Hoffmann to

incorrectly presume some of our steps and then to draw conclu-

sions about the overall validity of (37).

Let us look at the central criticism on which those conclusions

are based, i.e., that the authors overlooked the equations relevant

to their argument, namely, (53) in [4] and (18) in [5], and

consequently failed to establish the correct relationship between

the fields in the original and the adjoint waveguides. This is in

fact not true as [1, eq. (37)] was obtained from the well-known

general formulation [1, eq. (35)] by expressing in it the adjoint

field in terms of the components of the original field, as indeed

is given by [4, eq. (53)] and under the key assumption that

the permittivity tensor is symmetric. We agree with Dr.-Ing.

Hoffman that y terms, indeed, so not simply cancel out; but they

do, after considerable algebraic manipulation, nevertheless lead

to (37).

Looking at the relationship between the original and the ad-

Joint solutions more closely, in contrast to Dr.-Ing. Hoffmann’s

suggestions, no attempt was made in our paper to identify the

forward-running wave in the original with the forward-running

wave in the adjoint waveguide. However, the existence of self-

adjointness in the two-dimensional as opposed to three-dimen-

sional problems, and using the real inner product, was still

observed (following Bresler et al. [5]), but only under the follow-

ing conditions: that the permittivity tensor is symmetric and

provided the appropriate boundary conditions in the respective

waveguides are satisfied. Then the two waveguides are identical,

and the authors conclude that the solutions of the original and

the adjoint problems must be two identical SETS of eigenvectors,

which is clearly stated in the text and expressed using (25) and

(26).

On the other hand, when considering the corresponding eigen-

vectors individually, it was nevertheless understood that the

forward-running wave in the adjoint waveguide can be identified

with the backward-running wave in the original guide, as stated

by Bresler ei al. [5], and this was taken into account when

obtaining (37) from (35). As mentioned, this relationship between

the corresponding eigenvectors in the two guides is also given by

[4, eq. (53)]. This relationship is a result of introducing z depen-

dence into the analysis when going from three- to two-dimen-

sional problems, and can be deduced directly from Maxwell’s

equations and (42) in [4]. Of course, such a relationship might

still be possible in case of certain tensors that are not symmetric

(see [4, eq. (51)], where the self-adjointness is not present, and

obviously (37) cannot then be applied.
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Comments on “Computer-Aided Design Models for

Millimeter-Wave Finlines and Suspended-Substrate

Microstrip Lines”

JERZY K. PIOTROWSKI

In the above paper,l Pramanick and Bhartia state in section I

tiat, “In this paper, closed-form equations are developed for

dispersion in bilateral and unilateral finlines by using equivalent

susceptances of waveguide T-junctions, and for the characteristic

impedances by curve fitting to the spectral-domain results.”

Expressions for wave propagation in finlines described by tie

autiors are based on:

1)

2)

3)

4)

the dispersion model suggested by Meier [1];

the solution for cutoff wavelength in an air-filled finned

waveguide proposed by Burton and Hoefer [2];

equations for the equivalent susceptances in the bilateraf

(eq. (9)) and unilateral (eqs. (8) and (14)) finlines;

factor K (eq. (18)) for the unilateral finline, which has

been found empirically by the authors.

I would like to point out that the equivalent susceptances in

the bilateral and unilateral finlines, using Marcuvitz’s [3] formula

for the equivalent network of a waveguide T-junction, have

already been described in [4] and [5] (compare (9), (8), and (14)

with (4), (8), and (10) in [4]). Additionally, the authors have

known the paper [4], which is given as [20] in their references.

I wish to call this to the attention of the authors of the above

paper so that in future articles they may place their work in

proper perspective, and properly inform their readers of the state

of the art.
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